狂犬病预防控制技术指南(2016 版)
作者:中国疾病预防控制中心办公室 2016-04-21
近期,由中国疾病预防控制中心办公室指定的《狂犬病预防控制技术指南(2016)》一文,发布在中国疾病预防控制中心官网,现整理如下,供广大医生参考学习。
摘要
狂犬病是由狂犬病病毒感染引起的一种动物源性传染临床大多表现为特异性恐风、恐水、咽肌痉挛、进行性瘫痪等。近年来,狂犬病报告死亡数一直位居我国法定报告传染病前列,给人民群众生命健康带来严重威胁。
为指导基层疾控机构做好狂犬病的预防控制工作,尤其是暴露后的预防处置,降低狂犬病所致死亡,中国疾病预防控制中心组织专家,参考世界卫生组织和美国疾控中心的技术指南,以及国内外最新研究进展,制定了《狂犬病预防控制技术指南(201 6 版)》。
本指南系统回顾了狂犬病的病原学、临床学、实验室诊断、流行病学、疫苗和被动免疫制剂的种类、机理、效果、安全性和不良反应监测与处置,以及暴露预防处置方法等内容的科学证据,在此基础上对狂犬病暴露前和暴露后预防处置的伤口处置、疫苗接种和被动免疫制剂使用等技术给出了推荐建议。
本指南适用于从事狂犬病防控工作的各级各类疾病预防控制机构、狂犬病暴露预防处置门诊、医疗机构感染科和急诊科等专业人员。根据狂犬病的国内外研究进展,本指南今后将不断更新、完善。
病原学和实验室诊断
1. 病原学
狂犬病病毒(Rabies virus,RABV)属于单负病毒目(Mononegavirales)弹状病毒科(Rhabdoviridae)狂犬病毒属(Lyssavirus)。狂犬病病毒颗粒呈子弹状,长 100~300nm,直径约 75nm。病毒基因组长约 12kb,为不分节段的单股负链 RNA,从 3' 到 5' 端依次编码 5 种结构蛋白,分别为核蛋白(Nucleoprotein,N)、磷蛋白(Phosphoprotein,P)、基质蛋白(Matrixprotein,M)、糖蛋白(Glycoprotein,G)和依赖 RNA 的 RNA 多聚酶(RNA dependent RNA polymerase or Large protein,L)。
病毒颗粒由囊膜(Envelope)和核衣壳(Nucleocapsid)两部分组成,基因组 RNA 及外层紧密盘绕的 N、P、L 蛋白共同构成具有转录、翻译功能的核衣壳;颗粒外层脂质膜表面镶嵌着 G 蛋白以三聚体构成的纤突 ( Spike),为病毒中和抗原及与宿主受体结合的部位,M 蛋白位于外壳内侧和核衣壳之间,连接内外两部分。
狂犬病病毒不耐高温,悬液中的病毒经 56 度 30~60 分钟或 100 度 2 分钟即失去感染力。脑组织内的狂犬病病毒在常温、自溶条件下,可保持活力 7~10 天,4 度 可保存 2~3 周。狂犬病病毒在 pH 7.2~8.0 较为稳定,超过 pH 8 易被灭活。狂犬病病毒对脂溶剂(肥皂水、氯仿、丙酮等)、乙醇、过氧化氢、高锰酸钾、碘制剂以及季铵类化合物(如苯扎溴铵)等敏感。1:500 稀释的季胺类消毒剂、45%~70% 乙醇、1% 肥皂水以及 5%~7% 碘溶液均可在 1 分钟内灭活病毒,但不易被来苏水溶液灭活。
不同型别狂犬病病毒的致病性不同:在犬、猫等哺乳动物中传播,也称「街毒」的狂犬病病毒毒力很强,感染后一旦出现临床症状,病死率几乎 100%,是世界上病死率最高的传染病;而在蝙蝠中传播的狂犬病病毒毒力相对较弱。
直到 20 世纪 50 年代,RABV 一直被认为是狂犬病的唯一病原。通过对来自尼日利亚的与 RABV 有血清学相关性的病毒即 LBV(Lagos bat virus)和 MOKV(Mokola virus)的鉴定,以及对(1970 年分离自南非被蝙蝠咬伤病人的 DUVV(Duvenhage virus)病毒的分析,发现了狂犬病病毒群的复杂性,由此出现了「狂犬病相关病毒(Rabies-related virus)」和「狂犬病血清型」的术语,目前分别将 RABV、LBV、MOKV、DUVV 确定为四种血清型。
1950 年以来在欧洲分离到的蝙蝠病毒与 DUVV 呈血清学相关性,应用单克隆抗体反应将欧洲蝙蝠病毒进一步分为 EBLV-1(European bat lyssavirus 1)和 EBLV-2(European bat lyssavirus 2)。
针对狂犬病相关病毒多样性的遗传进化研究,产生了新的专业术语「基因型」,并继续发现了新的基因型,如 1997 年从澳大利亚果蝠中分离到的 ABLV(Australian bat lyssavirus)确定为基因 7 型。
为了更好地对日益增多的狂犬病相关病毒进行归类,国际病毒分类委员会(International Committee of Taxonomy Virus,ICTV)主持设立了狂犬病病毒属,将现存的基因型作为狂犬病病毒分类的基础,并结合系统发生进化树的拓扑结构、单克隆抗体反应谱,以及生态、宿主、地理范围等特征确立了病毒种类。
2014 年,ICTV 最新分类结果明确了 14 种(Species)狂犬病病毒。
除了上述 7 个基因型代表 7 种不同的狂犬病病毒外,21 世纪新发现的另外 7 种病毒包括从中亚食虫蝙蝠中分离到的 KHUV(Khujand virus)和 ARAV(Aravan virus),从俄罗斯食虫蝙蝠中分离到的 IRKV(Irkut virus)和 WCBV(West Caucasian bat virus),从非洲肯尼亚食虫蝙蝠中分离到的 SHIBV(Shimoni bat virus),从法国、德国食虫蝙蝠中分离到的 BBLV(Bokeloh bat lyssavirus)和坦桑尼亚非洲灵猫身上分离到的 IKOV(Ikoma lyssavirus) 。
2011 年从西班牙蝙蝠中分离到的 LLEBV(Lleida bat lyssavirus)尚未经 ICTV 明确归类。
2. 实验室诊断
标本采集:病人发病后(死亡前)可采集其唾液(间隔 3~6 小时,至少采集 3 份)、脑脊液、血清及颈后带毛囊的小块皮肤;病人死后最好采集其脑组织标本(小脑和脑干)进行实验室检测。
直接免疫荧光法(Direct Fluorescent Antibody Test,DFA)是狂犬病诊断的金标准,可以快速、敏感、特异地检测人和动物脑组织中的病毒抗原。临床病例活体组织标本(如颈后部皮肤毛囊)亦可进行 DFA 检测。直接快速免疫组化法(Direct Rapid Immunohistochemical Test,DRIT)及酶联免疫吸附测定法(Enzyme-Iinked Immuno Sorbent Assay,ELISA)亦可特异检测狂犬病病毒抗原。
病毒核酸检测可用于早期诊断,以逆转录 PCR 法(Reverse Transcription-PCR, RT-PCR)(包括 Real-time RT-PCR)检测体液(唾液、血清等)和脑组织等标本,但需要严格的质量控制以保证结果的准确性。脑组织及唾液等病毒含量高的样本还可进行病毒分离。细胞培养分离所需时间(1~2 天)远少于小鼠颅内接种分离法所需时间(10~21 天),且前者的生物安全风险远小于后者。
未接种过疫苗的患者,发病早期几乎没有中和抗体产生,到发病晚期(通常在临床症状出现后 7-8 天),病毒在脑内大量增殖后突破血脑屏障进入血液,刺激机体产生低水平的中和抗体。通过病毒中和试验检测病人血清或脑脊液中的中和抗体,可作为狂犬病诊断的依据之-。
世界卫生组织(Mrorld Health Organization,WHO)推荐的抗狂犬病病毒中和抗体标准检测方法包括快速荧光灶抑制试验 ( Rapid Fluorescent Focus Inhibition Test.RFFIT)和小鼠脑内中和试验(Mouse Neutralization Test,MNT)。
由于 RFFIT 法无需使用小鼠,所用时间短(24 小时),目前已被广泛采用。RFFIT 方法也是我国现行药典规定的检测狂犬病病毒中和抗体的标准方法之一。
此外,常用的狂犬病病毒中和抗体检测方法还有荧光抗体病毒中和试验(Fluorescent AntibodyVirus Neutralization Test, FAVNT)。用 ELISA 法测定的抗狂犬病病毒糖蛋白抗体滴度与用病毒中和试验测定的结果有一定的相关性(约 80% 符合率),但相应试剂盒尚未普及。
此外,还可以通过检测中和抗体,监测暴露前抗体背景及暴露后疫苗注射的免疫效果。WHO 狂犬病专家咨询委员会认为:中和抗体水平等于或高于 0.5IU/ml 时,接种者才具备了有效的保护能力;如果发现中和抗体水平低于 0.5IU/ml,应进行加强免疫,至达到有效保护水平为止。
临床学
1. 发病机理
大多数人间狂犬病病例是由于被患狂犬病的动物咬伤所致,少数是由于被抓挠或伤口、粘膜被污染所致,因移植狂犬病患者捐赠的器官或组织发病也偶有报道,但病毒不能侵入没有损伤的皮肤。
嗜神经性是狂犬病病毒自然感染的主要特征,病毒的复制几乎只限于神经元内。病毒最初进入伤口时,不进入血液循环(通常在血液中检测不到狂犬病病毒),而是在被咬伤的肌肉组织中复制,然后通过运动神经元的终板和轴突侵入外周神经系统[10-15]。在一些蝙蝠变异株中,由于嗜皮肤性,病毒增殖也可以发生在感觉神经[10, 13, 15] 。病毒进入外周神经后,以运输小泡为载体,沿轴突以逆轴浆运动的方向向中枢神经系统“向心性”移行,而不被感觉或交感神经末梢摄取[10-13]。其移行速度取决于转运方式,逆向轴突运输速度较快,可达5-100mm/天,如一定范围内(如10μm至2cm)的突触同时受感染,病毒移行速度甚至会更快。
病毒在轴突移行期间不发生增殖,当到达背根神经节后,病毒即在其内大量增殖,然后侵入脊髓和整个中枢神经系统。动物实验发现,狂犬病病毒从脊髓上行到脑的扩散速度非常迅速,一旦侵入脑则迅速增殖,脑干最先受累,也是感染最重的区域。
在中枢神经系统中增殖后,病毒通过在运动轴突的顺向轴浆运输“离心性”扩散进入腹侧根、被根神经节及其感觉轴突,并感染感觉轴突支配的肌梭、皮肤、毛囊及其他非神经组织,主要累及神经丛和唾液腺腺泡细胞,并经唾液腺排放到唾液中,再由咬伤伤口或被带毒唾液污染的粘膜传播到下一个受害者。在感染末期,心、胰腺、肾上腺和胃肠道等神经外组织也同时受累。临床发病时,病毒已广泛分布于中枢神经系统及神经外的器官中。
人间狂犬病潜伏期从5天至数年(通常2-3个月,极少超过1年),潜伏期长短与病毒的毒力、侵入部位的神经分布等因素相关。病毒数量越多、毒力越强、侵入部位神经越丰富、越靠近中枢神经系统,潜伏期就越短。此外,肌肉特异性小RNA可能通过抑制病毒在肌肉中的转录和复制影响潜伏期[6, 9]。狂犬病实验感染动物(如犬)的最长潜伏期为半年。在潜伏期内,病毒主要存在于外周肌肉或神经细胞中[6, 10-19]。
包括人类在内的多种哺乳动物感染狂犬病病毒后,随着病毒在中枢神经系统的扩散,均可引起严重的进行性脑、脊髓、脊神经根炎,病毒数量与临床症状的严重程度无关[20, 21] 。人类的临床表现可分为狂躁型和麻痹型两种,临床分型可能与病毒对神经组织不同位点的特异性反应有关,而与病毒在中枢神经系统内的解剖定位无关[22, 23]。电生理学研究发现,麻痹型狂犬病的虚弱症状与外周神经轴突病变或者脑白质变性有关[24, 25]。病毒首先侵入运动神经元解释了狂躁型狂犬病人亚临床的前角细胞功能失调要早于感觉消失症状的出现,并且症状首先发生在被咬伤部位附近,再逐渐发展到身体其他部位。同样的解释也适用于麻痹型狂犬病人的前驱症状和体征。犬类麻痹型狂犬病的核磁弥散张量成像显示,脑干部位神经束的完整性受损,限制了病毒向前脑的传播。病毒的免疫逃避策略加之血脑屏障的完整性阻碍了中枢神经系统中病毒的清除。目前尚无狂犬病病人因免疫抑制或加强而死亡的证据。
如无重症监护,病人会在出现神经系统症状后1-5天内死亡。目前对狂犬病导致死亡的病理生理学尚未阐明。尽管脑、脊髓、脊神经根的炎症广泛分布,但并没有破坏神经组织结构[26]。死因可能是由于控制循环和呼吸系统的中枢神经系统受累或功能障碍[20, 27-29]。
(二)临床表现与诊断标准
1.狂犬病暴露者的伤口感染
对于狂犬病暴露者而言,除了罹患狂犬病的风险外,动物咬伤还可以导致各种复杂的外科伤口、可能的严重并发症以及继发的细菌感染。致伤动物不同,所导致的伤口类型、临床特点以及预后均有所不同。例如,普通外科创伤的伤口感染率通常为5%-7%[30],而在III级暴露中,犬咬伤伤口大部分为撕裂伤(约60%-76.5%),而猫咬伤大部分为穿刺伤(约85.3%);犬咬伤伤口平均感染率约14.8%,而猫咬伤约为26.8%;手、足部位的咬伤伤口感染率明显较其他部位要高;犬咬伤容易引起化脓性软组织感染,而猫咬伤容易引起淋巴管/淋巴结炎、丹毒等[31, 32]。引起咬伤伤口感染的细菌主要来源于动物口腔,48%的犬咬伤和63%的猫咬伤感染伤口分离出需氧和厌氧菌混合感染,犬咬伤感染伤口分离出的主要细菌是犬属巴斯菌属,而出血败血型巴斯菌属是猫咬伤感染伤口内最主要的菌种[32-37]。灵长类咬伤感染伤口内分离的菌种包括嗜血杆菌、核粒梭形菌、微小消化链球菌、放线菌属、产碱杆菌和直肠沃林氏菌(拟杆菌属)。猪咬伤伤口分离出的菌种主要包括猪放线菌、拟杆菌属、大肠杆菌、黄杆菌属、多杀性巴斯杆菌、变形杆菌、金黄色葡萄球菌(耐甲氧西林MRSA)等[37]。巴斯菌属、链球菌、葡萄球菌、摩拉克菌和奈瑟菌属是最常见的需氧菌;梭形杆菌属、拟杆菌属、噬卟啉拟杆菌属是最常见的厌氧菌,且其中大部分细菌为产β-内酰胺酶,甚至是耐甲氧西林的菌种(MRSA),因此,在伤口感染或预防性使用抗生素时,需考虑病原菌耐药因素[38-43]。
2.狂犬病的临床表现
狂犬病在临床上可表现为狂躁型(大约2/3的病例)或麻痹型。由犬传播的狂犬病一般表现为狂躁型,而吸血蝙蝠传播的狂犬病一般表现为麻痹型[25-27]。狂躁型患者以意识模糊、恐惧痉挛,以及自主神经功能障碍(如瞳孔散大和唾液分泌过多等)为主要特点。麻痹型患者意识清楚,但有与吉兰-巴雷综合征(Guillain-Barre Syndrome,GBS)相似的神经病变症状。GBS是脊神经和周围神经的脱髓鞘疾病,又称急性特发性多神经炎或对称性多神经根炎,临床主要表现为进行性、上升性、对称性麻痹,四肢软瘫,以及不同程度的感觉障碍。与GBS不同的是,狂犬病患者一般伴有高热、叩诊肌群水肿(通常在胸部、三角肌和大腿)和尿失禁,而不伴有感觉功能受损。
根据病程,狂犬病的临床表现可分为潜伏期、前驱期、急性神经症状期(兴奋期)、麻痹期、昏迷和死亡几个阶段。但实际上发病是一个连续的临床过程,而不是简单的一系列可以独立分割的表现[6, 20]。
(1)潜伏期:从暴露到发病前无任何症状的时期,一般为1-3个月,极少数短至两周以内或长至一年以上,此时期内无任何诊断方法。
(2)前驱期:患者出现临床症状的早期,通常以不适、厌食、疲劳、头痛和发热等不典型症状开始,50%-80%的患者会在原暴露部位出现特异性神经性疼痛或感觉异常(如痒、麻及蚁行感等),可能是由于病毒在背根神经节复制或神经节神经炎所致。此时期还可能出现无端的恐惧、焦虑、激动、易怒、神经过敏、失眠或抑郁等症状。前驱期一般为2-10天(通常2-4天)。
(3)急性神经症状期:患者出现典型的狂犬病临床症状,有两种表现,即狂躁型与麻痹型。
狂躁型患者出现发热并伴随明显的神经系统体征,包括机能亢进、定向力障碍、幻觉、痉挛发作、行为古怪、颈项强直等。其突出表现为极度恐惧、恐水、怕风、发作性咽肌痉挛、呼吸困难、排尿排便困难及多汗流涎等。恐水、怕风是本病的特殊症状,典型患者见水、闻流水声、饮水或仅提及饮水时,均可引起严重的咽喉肌痉挛。患者虽渴极而不敢饮,即使饮后也无法下咽,常伴声嘶及脱水。亮光、噪声、触动或气流也可能引发痉挛,严重发作时尚可出现全身疼痛性抽搐。由于常有呼吸肌痉挛,故可导致呼吸困难及发绀。大多数动物狂犬病病例的机能亢进期会持续数小时至数天,人间狂犬病病例的机能亢进为间歇性,由数个持续1-5分钟的兴奋期组成。患者的神志大多清楚,亢进期之间,患者一般合作,并可以进行交流。急性神经症状期的其他异常表现包括肌束震颤(尤其是暴露部位附近)、换气过度、唾液分泌过多、局部或全身痉挛,以及一些较罕见的症状,包括阴茎异常勃起或性欲增强,这些体征都与自主神经功能障碍有关。本期一般持续1-3天。
麻痹型患者无典型的兴奋期及恐水现象,而以高热、头痛、呕吐、咬伤处疼痛开始,继而出现肢体软弱、腹胀、共济失调、肌肉瘫痪、大小便失禁等,呈现横断性脊髓炎或上升性脊髓麻痹等类GBS表现。其病变仅局限于脊髓和延髓,而不累及脑干或更高部位的中枢神经系统。
(4)麻痹期:指的是患者在急性神经症状期过后,逐渐进入安静状态的时期,此时痉挛停止,患者渐趋安静,出现弛缓性瘫痪,尤以肢体软瘫最为多见。麻痹可能是对称性或非对称性的,以被咬肢体侧更为严重;或者呈上升性,类似GBS。眼肌、颜面部肌肉及咀嚼肌也可受累,表现为斜视、眼球运动失调、下颌下坠、口不能闭、面部缺少表情等。进而患者的呼吸渐趋微弱或不规则,并可出现潮式呼吸;脉搏细数、血压下降、反射消失、瞳孔散大。临终前患者多进入昏迷状态,呼吸骤停一般在昏迷后不久即发生。本期持续6-18小时。
狂犬病的整个自然病程一般不超过5日。死因通常为咽肌痉挛而窒息或呼吸循环衰竭[20, 27-29]。本病在临床上需与破伤风、病毒性脑膜脑炎、脊髓灰质炎、GBS等相鉴别。
3.诊断标准
(1)原国家卫生部2008年颁布的狂犬病诊断标准[9]:
根据患者的流行病学、临床表现和实验室检查结果进行综合判断,病例确诊需要实验室证据。
①临床诊断病例,符合下列任一项即可诊断:
A.典型的狂躁型狂犬病临床表现;
B.明确的动物致伤史+典型的麻痹型狂犬病临床表现。
②确诊病例,临床诊断病例加下列任一项,即可确诊:
A.直接荧光抗体法(或ELISA法):检测患者唾液、脑脊液或颈后带毛囊的皮肤组织标本中狂犬病病毒抗原阳性,或用RT-PCR检测狂犬病病毒核酸阳性;
B.细胞培养方法:从患者唾液或脑脊液等标本中分离出狂犬病病毒;
C.脑组织检测:尸检脑组织标本,用直接荧光抗体法或ELISA法检测狂犬病病毒抗原阳性、RT-PC
(2)WHO的狂犬病定义[6]:
临床病例:病例具有急性神经性综合征(如脑炎),主要表现为机能亢奋(如狂躁型狂犬病)或者麻痹综合征(如麻痹型狂犬病),如果没有重症监护支持,病人通常会在首发症状出现后7-11天内进行性发展为昏迷和死亡,常见死因为呼吸循环衰竭。
符合下列实验室标准中的1种或几种即可确诊:
A.存在病毒抗原;
B.细胞培养方法或实验动物接种中分离到病毒;
C.未接种疫苗者的脑脊液或血清中存在病毒特异性抗体;
D.通过分子生物学方法在活体或尸检样本(如脑活检样本、皮肤、唾液、浓缩尿)中检测到病毒核酸。
WHO的狂犬病病例分类如下:
①疑似病例:符合临床病例定义的病例;
②可能病例:疑似病例,同时具有与疑似狂犬病动物接触的可靠病史;
③确诊病例:实验室确认的疑似病例或可能病例。
在缺少动物暴露史或临床疑似脑炎症状的情况下,如果实验室诊断检测明确,仍可进行确定性诊断。
对可能感染狂犬病的患者在采取适当预防措施情况下进行核磁共振成像检查可能有助于诊断。无论临床类型如何,当脑干、海马、下丘脑、深层和皮层下白质以及深层和皮质灰质的核磁共振T2成像出现模糊、微弱的异常高信号时,均提示可能为狂犬病。疾病晚期,当患者进入昏迷状态时,增强核磁可以清楚地显示上述改变,这些特征可用来将狂犬病与其它病毒性脑炎相区别。脑部 CT几乎没有诊断价值[44-46]。
三、流行病学
(一)疾病负担
狂犬病在全球广泛分布,除南极洲外,所有大陆均有人间狂犬病报告。进入21世纪后,狂犬病仍然是重要的公共卫生威胁,全球每年约有60000人死于狂犬病,是致死人数最多的动物源性传染病[47, 48], 每年由此引发的经济负担约为40亿美元[49]。目前,除许多太平洋岛国无狂犬病报告外,仅有澳大利亚消除了肉食动物狂犬病,西欧、加拿大、美国、日本、马来西亚和少数拉丁美洲国家消除了犬狂犬病[6, 47]。
目前,99%的人间狂犬病发生在发展中国家,主要分布在亚洲、非洲和拉丁美洲及加勒比海地区。亚洲的狂犬病病例数居全球首位,估计年死亡人数达30000人(95%CI,8100-61400)[49]。印度为当前狂犬病疫情最严重的国家,据估计年狂犬病发病数为20000-30000例,发病率为2/10万。中国人间狂犬病发病仅次于印度,2007年疫情高峰时,年报告病例数达3300例[50]。2004-2014年,狂犬病死亡人数一直高居我国传染病死亡数的前3位。此外,调查显示,部分地区狂犬病漏报率可能高达35%[51],提示我国狂犬病的疾病负担可能存在低估[52]。
(二)感染动物来源
狂犬病在自然界的储存宿主动物包括食肉目动物和翼手目动物,狐、狼、豺、鼬獾、貉、臭鼬、浣熊、猫鼬和蝙蝠等也是狂犬病的自然储存宿主,均可感染狂犬病病毒成为传染源,进而感染猪、牛、羊和马等家畜。狂犬病易感动物主要包括犬科、猫科及翼手目动物,禽类、鱼类、昆虫、蜥蛎、龟和蛇等不感染和传播狂犬病病毒。全球范围内,99%的人间狂犬病是由犬引起[7],特别是亚洲、非洲等狂犬病流行区,犬是引起人间狂犬病的最主要原因。而犬狂犬病疫情控制较好的欧洲、北美、澳大利亚及部分拉丁美洲国家的传染源为蝙蝠、狐、豺、狨猴、猫鼬和浣熊等野生动物[53-57]。
宿主动物中,蝙蝠较为特殊,由于蝙蝠暴露可能为极难察觉的细微咬伤或损伤[18],从而导致暴露风险大为提高。WHO及美国CDC(Centers for Disease Control)均将蝙蝠暴露归类为严重暴露,要求将其按照III级暴露进行处置[6, 18, 19, 22]。美国和加拿大1950-2007年间56例蝙蝠导致的人间狂犬病病例中,有明确咬伤史者仅22例(39%);与蝙蝠直接接触而无咬伤(如触摸蝙蝠)者9例(16%);有6例(11%)并无明确接触史,仅发现房间内有蝙蝠;而无直接接触者为19例(34%)[58]。
WHO指出,对北美洲和欧洲狂犬病流行地区的野生和家栖啮齿类动物的大规模检测显示,此类动物极少感染狂犬病,狂犬病病毒终端溢出性感染仅为偶发事件,说明此类动物并非狂犬病的贮存宿主,也不参与该疾病的流行和传播[6, 22]。美国CDC也指出,啮齿类(尤其小型啮齿类,如:花栗鼠、松鼠、小鼠、大鼠、豚鼠、沙鼠、仓鼠)和兔形目(包括家兔和野兔)极少感染狂犬病,也未发现此类动物导致人间狂犬病的证据。根据美国20年(1985-2004年)的监测,尽管在浣熊狂犬病发病地区,偶有旱獭(土拨鼠)感染狂犬病的记录,但从未在小型啮齿动物中检测到狂犬病病毒,也无啮齿类或兔形目动物导致人间狂犬病病例的证据[18, 59]。
(三)我国人间狂犬病流行特征
20世纪50年代以来,我国人间狂犬病先后出现了3次流行高峰(图1)。第一次高峰出现在20世纪50年代中期,年报告死亡数曾逾1900人。第二次高峰出现在20世纪80年代初期,1981年全国狂犬病报告死亡7037人,为新中国成立以来报告死亡数最高的年份。整个80年代,全国狂犬病疫情在高位波动,年报告死亡数均在4000人以上,年均报告死亡数达5537人[60]。第三次高峰出现在21世纪初期,狂犬病疫情在连续8年快速下降后,重新出现快速增长趋势,至2007年达到高峰,当年全国报告死亡数达3300人。在第三次疫情高峰前后,我国采取了一系列遏制狂犬病的措施,包括落实人间狂犬病防控措施、建立狂犬病多部门防控机制、强化犬只管理和动物狂犬病防治,以及加强人用狂犬病疫苗和被动免疫制剂质量监管等[61],取得了较为显著的防治效果。自2008年起,我国狂犬病疫情出现持续回落,至2014年报告发病数已降至1000例以下,较2007年的峰值下降了72%。
历史上我国所有省份均报告过人间狂犬病病例。近年狂犬病疫情主要分布在人口稠密的华南、西南、华东地区,但其他省份也时有疫情报告。1996-2008年,除西藏和青海外,其余29省均有狂犬病病例报告,报告病例数排名前10位的省份为广西、湖南、贵州、广东、江西、江苏、湖北、河南、四川和安徽,报告病例占全国总数的86.9%[62],全国发病地区分布见图2。
2007年以来,狂犬病波及地区数呈下降趋势,但速度相对缓慢。2007年全国23省共993个县(区)报告病例,2014年仍有567个县(区)报告病例。2007年后,多数省份狂犬病疫情呈下降趋势,特别是疫情较重的省份下降显著,但疫情有向北和向西北地区扩展的趋势[50, 63],河北、山西、云南、陕西、海南、重庆等既往报告发病数较少的省份曾一度出现疫情上升。2012年后,各省疫情均呈持续下降趋势。
我国每个月均有狂犬病病例报告,夏秋季高发, 发病高峰一般出现在8月[64]。2005-2011年监测数据分析显示,不同地区的季节性特征存在差异,纬度越高季节性越明显,病例发病的时间相对集中[65]。病例呈现“三多”的特征:农村地区病例较多,农民一般占病例总数的65%以上;男性病例数约为女性的2倍;15岁以下儿童和50岁以上人群发病较多,1996-2008年近25%的病例为15岁以下儿童[62, 66, 67]。病例主要由犬伤所致,约占90%左右;其次为猫,占5%左右,其他致伤动物包括马、松鼠、猪、蝙蝠、猴和獾等[68],但较为少见,仅占不到5%。约50%伤人动物为家养,其中绝大多数家养动物未接种动物狂犬病疫苗,流浪动物约占伤人动物总数的25%。
根据我国人用狂犬病疫苗的使用量,估计全国年暴露人口数逾4000万[68]。部分狂犬病高发省份的监测显示,90%以上的暴露就诊人群为II级和III级暴露,其中III级暴露约40%。全部暴露者中,约10%未全程接种疫苗[69, 70];III级暴露者中,仅15%左右接受被动免疫制剂注射。绝大多数病例由狂犬病病毒街毒感染所致,但也有少量由狂犬病毒属相关病毒感染致病的报道[71]。
四、人用狂犬病疫苗
(一)人用狂犬病疫苗的历史和现状
1882年,法国人路易巴斯德先生首次成功发明了人用狂犬病疫苗,之后经历了早期的动物神经组织疫苗、禽胚疫苗、细胞培养的粗制疫苗,发展到目前技术日趋完善的原代地鼠肾细胞、鸡胚细胞、人二倍体细胞和Vero细胞培养的纯化疫苗。
早期的神经组织疫苗免疫效果不佳(全程免疫后仍有1‰的死亡病例),且疫苗接种后局部和全身反应严重,由于疫苗中含有动物脑组织的髓磷脂成分,接种后可能引起神经性麻痹反应(变态反应性脑脊髓炎)。WHO于1984年建议停止生产和使用神经组织疫苗,目前各国已陆续停止使用[3, 6, 72]。
20世纪60年代起,采用细胞和组织胚胎培养技术生产的狂犬病疫苗(Cell Culture and Embryonated Egg-based Rabies Vaccines, CCEEVs)取得了长足发展。由于采用了细胞培养和纯化技术,CCEEVs避免了产品中残留动物脑组织、细胞蛋白残留等引起的不良反应,提高了疫苗效价和免疫后抗体水平,减少了注射针次,最大限度降低了免疫失败病例[3]。现已证明,CCEEVs可安全有效地预防狂犬病[6]。目前广泛使用的有Vero细胞纯化疫苗、人二倍体细胞疫苗、纯化鸡胚细胞疫苗和原代地鼠肾细胞疫苗等。
人二倍体细胞疫苗(Human Diploid Cell Rabies Vaccine, HDCV)为美国Wistar研究所首创,随后法国Merieux研究所1974年获得生产许可,经多中心临床人体观察,该疫苗接种后不良反应发生率低、症状轻,免疫效果好。但是人二倍体细胞增殖慢,病毒产量低,疫苗成本高,价格贵,尚不能得到广泛应用[3]。
纯化Vero细胞狂犬病疫苗由法国Merieux研究所于1985年获得生产许可,人体观察不良反应轻、效果好,与人二倍体细胞疫苗有着同样的安全性和效力。而且由于培养的狂犬病病毒滴度高、疫苗产量大、价格低,在世界范围得到了广泛的应用[3]。
纯化鸡胚细胞疫苗和原代地鼠肾细胞疫苗根据不同厂家的临床观察,其不良反应较轻微,免疫效果、安全性和有效性均较好[73, 74]。
现代生物技术的发展为新型疫苗的研究提供了更多可能性,比如重组疫苗、DNA(Deoxyribonucleic acid)疫苗、多肽疫苗等。但是与纯化细胞疫苗相比,大部分没有优势,个别重组疫苗已应用于野生动物,但目前在人体的研究进展不明。例如,临床实验结果显示,含有狂犬病G蛋白的痘苗和金丝雀痘病毒载体疫苗接种2剂可产生中和抗体,但抗体水平低于人二倍体细胞疫苗[72]。
(二)我国人用狂犬病疫苗的历史和现状
1980年以前,我国一直生产和使用羊脑制备的经石炭酸灭活的脑组织疫苗。1965年,我国开始研制原代地鼠肾细胞培养的原液灭活疫苗,此疫苗须加入氢氧化铝(Al(OH)3)作为佐剂以增加疫苗效力,1980年获生产许可证书,当时以Habel法测定疫苗效力,要求保护指数≥10000,需皮下注射14针;后改用NIH法测定效价,效价定为1.3IU/2ml,免疫程序也改为5针法。Fangtao Lin的研究显示,该疫苗注射后抗体水平高于羊脑疫苗[75],对确诊为狂犬病的动物致伤的暴露者有保护作用。由于新疫苗效价仍较低且免疫失败病例频发,卫生部决定改进疫苗生产工艺,将疫苗培养的病毒原液超滤浓缩3-5倍以提高疫苗中抗原含量,使加入氢氧化铝佐剂后的疫苗效价能达到≥2.5IU的标准。然而,单纯浓缩疫苗在提高效力的同时,由于杂质蛋白残留物含量相应增高,不良反应发生率升高且症状加重,严重不良反应发生率达5%-10%。此后,为改进疫苗的质量特性,引入柱层析等纯化技术[76]去除杂质蛋白,疫苗仍然添加氢氧化铝佐剂,NIH法检测效价可达2.5IU以上,达到了WHO设定的疫苗有效标准。
使用WHO推荐的通用的暴露前“3针法”和暴露后“5针法”,尽管添加氢氧化铝佐剂可以增加免疫效果,但会导致机体免疫应答缓慢,产生中和抗体延迟。由于狂犬病疫苗主要用于暴露后免疫,疫苗诱导免疫的时效性非常重要。2005年,国家食品药品监督管理局要求去除氢氧化铝佐剂。临床研究显示,去佐剂疫苗的早期免疫反应明显高于佐剂疫苗,初次免疫14天中和抗体阳转率可达100%,且不良反应发生率低[77]。1990年以来,我国研制或引进Vero细胞为基质的纯化狂犬病疫苗大量上市,2014年,国产人二倍体细胞疫苗也批准上市,疫苗种类不断增多,我国目前批准上市的人用狂犬病疫苗种类见表1。
表 1. 我国目前批准上市应用的人用狂犬病疫苗种类
疫苗名称
病毒毒种
基质
Vero细胞纯化疫苗
PV 、CTN和aG株
Vero细胞
人二倍体细胞疫苗
PM株
MRC-5人二倍体细胞
地鼠肾原代细胞纯化疫苗
aG株
原代地鼠肾细胞
原代鸡胚细胞纯化疫苗
Flury-LEP株
鸡胚成纤维细胞
(三)人用狂犬病疫苗免疫程序的演变
人类最早由路易巴斯德应用感染狂犬病病毒的干燥兔脊髓悬液的减毒活病毒尝试预防狂犬病,连续注射13针而获得成功。之后研发的灭活神经组织疫苗需连续接种14-21针。随着细胞培养疫苗的出现,疫苗的免疫原性有了较大提高,通过实验不同免疫针次和间隔时间进行抗体应答比较,对于效价高于2.5IU/剂的细胞培养疫苗可采用简化的接种程序,欧洲率先采用0、3、7、14、28、90天注射的6针接种程序。随着研究数据的积累发现第6针疫苗的接种并不能显著提高抗体水平,所以改为根据受种者机体的具体情况决定是否接种第6针[20],一般情况下仅需要接种5针。之后,“5针法”被WHO推荐且目前仍在全球广泛应用。1984年,前南斯拉夫的Zagreb公共卫生研究院针对不同种类狂犬病疫苗进行不同间隔接种的免疫程序及优化接种程序的探索研究,结果显示,于0天左右上臂三角肌各接种1剂,7、21天再分别接种1剂的免疫程序所产生的中和抗体时间较早,且水平也较高,此免疫程序被称为“2-1-1”程序[78]。1992年WHO在狂犬病专家委员会第八次会议中正式推荐应用[79]。美国免疫实施顾问委员会(Advisory Committee on Immunization Practices,ACIP)于2009年在综合已发表文献的基础上,建议健康成年人在规范处置的情况下,可采取原5针免疫程序减少最后1针的方法,即在0、3、7、14天注射的“简易4针法”免疫程序[80]。
目前,WHO推荐的暴露后免疫肌内注射程序包括“5针法”(Essen法)、“2-1-1”程序(Zagreb法)以及ACIP推荐的“简易4针法”[22]。推荐的暴露前免疫肌内注射方案为3剂疫苗,分别在0、7和21或28天接种。我国批准上市的狂犬病疫苗的暴露后免疫程序包括“5针法”和“2-1-1”程序两种,各疫苗的免疫程序以国家食品药品监督管理总局批准的疫苗使用说明书为准。
(四)人用狂犬病疫苗的免疫机制、毒株及质量标准
狂犬病病毒RNA编码核蛋白(N)、M1、M2、病毒包膜糖蛋白(G)和L五种蛋白,其中 G蛋白是狂犬病病毒最主要的抗原,可有效刺激特异性辅助性T细胞(helper T, Th)和细胞毒性T细胞(Cytotoxic lymphocyte, CTL)增生,并诱导机体产生特异性抗体[81]。G蛋白特异性抗体是狂犬病疫苗最重要的保护性抗体[82],免疫效果主要依赖其抗原表位、结构、蛋白折叠及糖基化等。N蛋白也是一种有效的保护性抗原,能够刺激B细胞和Th细胞诱导产生细胞和体液免疫。磷蛋白(P)可诱导CTL,但保护作用较弱。机体在接种狂犬病疫苗约7天左右产生IgM(Immunoglobulin M)抗体,在约14天后产生IgG(Immunoglobulin G)抗体并迅速升高[83]。IgM和IgG抗体均具有中和病毒的能力[3],有些中和抗体能进入感染狂犬病病毒的神经细胞内抑制病毒复制。CTL的高峰出现在免疫后12天,可清除中枢神经系统内的狂犬
目前国内生产狂犬病被动免疫制剂的企业及其产品规格详见附表2。随着狂犬病人免疫球蛋白的供给量增加,患者经济负担将随之减少。
(二)被动免疫制剂的作用机制
抗狂犬病血清作为狂犬病病毒的特异性被动免疫制剂,无需机体免疫应答过程就能够对狂犬病病毒进行即时中和。其主要作用为在疫苗诱导机体产生有效抗体之前,在患者暴露部位立即提供所需的中和抗体,其作用迅速但短暂。而疫苗诱导产生抗体虽需1-2周的时间,但抗体可持续存在数年。从图3可以看出狂犬病疫苗暴露后免疫程序启动后分别在0、3、7、14、28天诱导产生的抗体滴度变化趋势(实折线),在第一针疫苗注射后至机体产生足量抗体(≥0.5IU/ml)之前(主动免疫诱导的保护力空白区或称高风险感染期),被动免疫制剂可为该高风险时段提供免疫保护。在高风险感染期伤口周围浸润注射的被动免疫制剂可使伤口局部获得高浓度的中和抗体,阻断病毒在伤口中的扩散。值得注意的是,伤口周围浸润注射的中和抗体并不会令外周循环中的抗体水平明显增高(图3中虚折线),外周循环中的中和抗体水平增高主要依赖于疫苗注射后产生的主动免疫保护。因此,该阶段被动免疫制剂的浸润注射对疫苗所提供的主动免疫保护所产生的干扰并不严重,但首剂疫苗注射7天后,机体已产生较高水平的中和抗体,此时再注射被动免疫制剂已无意义。
(三)被动免疫制剂的保护效果
根据WHO狂犬病专家咨询委员会建议,原卫生部颁布的《狂犬病暴露预防处置工作规范(2009年版)》以及狂犬病疫苗使用说明书等相应规定,III级暴露即一处或多处皮肤出血性咬伤或被抓伤出血,或被不能确定健康状况的动物唾液污染粘膜,应按暴露后程序在彻底清洗伤口的基础上立即接种疫苗并注射ERA或HRIG。ERA按40IU/kg给予,HRIG按20IU/kg给予,将被动制剂尽可能多的在咬伤局部浸润注射,剩余部分肌肉注射。对于艾滋病病人等免疫力低下人群,WHO专家建议即使是II级暴露也应联合使用被动免疫制剂。
被动免疫制剂的正确使用十分重要,基本原则是首先在受伤部位局部进行浸润注射,可直接中和刚进入体内的病毒,构建阻遏病毒从伤口向周边神经组织蔓延的第一道屏障。国内很多暴露后免疫失败病例,是因未联合使用被动免疫制剂或使用方法不当造成的。Khawplod的研究指出,已单独使用疫苗,而未能及时使用被动免疫制剂的III级暴露者,在7天内仍应考虑给予被动免疫制剂,其主要依据为在此期间内机体对疫苗的主动免疫保护尚未产生,而局部伤口的浸润注射对于使用疫苗后机体主动免疫产生的影响较小[132]。
抗狂犬病被动免疫制剂的应用最早可追溯到1891年,当时即有报道采用疫苗免疫的人全血治疗被疯狼严重咬伤者。此后采用抗血清治疗暴露后病例的案例时有报道,但疗效无法肯定。WHO狂犬病专家咨询委员会通过现场观察肯定了疫苗与被动免疫制剂的联合应用效果。1954年在伊朗一起疯狼咬伤18人的事件中,5人仅单用疫苗治疗,最终3人患狂犬病死亡;而暴露程度相似的另外13人采用疫苗联合抗血清治疗,最终仅1人患病死亡。伊朗一项为期17年的调查显示,单纯用狂犬病疫苗的298名重伤病人病死率为25%,而在疫苗联合抗血清处置的364名重伤病人病死率仅为5.3%[3]。对感染狂犬病病毒的动物模型的研究也发现,尽管均接种狂犬病疫苗,但是否联用抗狂犬病被动免疫制剂的保护效果存在显著性差异。
我国已有多起关于疫苗与被动免疫制剂联合应用效果自然对照的报告。1981年和1982年先后报告两起狂犬病动物伤多人事件,暴露者共58人,重伤者中单纯应用疫苗的3人均发病死亡,而及时采用疫苗联合马抗狂犬病血清治疗的26人均存活。2004年,江西省景德镇一狂犬咬伤29人,其中III级暴露12人,1人未接种疫苗和抗血清发病死亡,而另外11人采用疫苗和被动免疫制剂联合处置后全部存活。2010年报告的一起狂犬咬伤多人面部事件中,单纯采用疫苗治疗的暴露者发病死亡,而其余暴露者采用联合被动免疫制剂治疗后均存活[3]。
由此可见,在疫苗初次免疫接种后的有效中和抗体产生前的窗口期,采用被动免疫制剂联合治疗至关重要,III级暴露者尤甚。
六、人间狂犬病的预防建议
(一)暴露前预防
1. 基础免疫
所有持续、频繁暴露于狂犬病病毒危险环境下的个体均推荐进行暴露前预防性狂犬病疫苗接种,如接触狂犬病病毒的实验室工作人员、可能涉及狂犬病病人管理的医护人员、狂犬病病人的密切接触者、兽医、动物驯养师以及经常接触动物的农学院学生等。此外,建议到高危地区旅游的游客、居住在狂犬病流行地区的儿童或到狂犬病高发地区旅游的儿童进行暴露前免疫[6]。
免疫程序:第0天、第7天和第21天(或第28天)分别接种1剂,共接种3剂。
接种途径、部位和剂量:肌内注射。2岁及以上儿童和成人于上臂三角肌注射;2岁以下儿童于大腿前外侧肌注射。禁止在臀部肌肉注射。每剂0.5ml或1.0ml(具体参照产品规格或产品说明书)。
2. 加强免疫
如出于暴露前预防的目的,则已接受全程基础免疫者无需定期进行加强免疫。定期加强免疫仅推荐用于因职业原因存在持续、频繁或较高的狂犬病病毒暴露风险者(如接触狂犬病病毒的实验室工作人员和兽医)。
免疫程序:接触狂犬病病毒的实验室人员每6个月监测一次血清中和抗体水平;兽医、动物疫控部门等每2年监测一次血清中和抗体水平。当血清中和抗体水平<0.5 IU/ml时需加强接种1剂。
接种途径、部位和剂量:肌内注射。2岁及以上儿童和成人于上臂三角肌注射;2岁以下儿童可在大腿前外侧肌注射。每剂0.5ml或1.0ml(具体参照产品规格或产品说明书)。
3. 使用禁忌
对于暴露前预防,对疫苗中任何成分曾有严重过敏史者应视为接种同种疫苗的禁忌症。妊娠、患急性发热性疾病、急性疾病、慢性疾病的活动期、使用类固醇和免疫抑制剂者可酌情推迟暴露前免疫。免疫缺陷者不建议进行暴露前免疫,如处在狂犬病高暴露风险中,亦可进行暴露前免疫,但完成免疫接种程序后需进行中和抗体检测。对一种品牌疫苗过敏者,可更换另一种品牌疫苗继续原有免疫程序。
(二)暴露后预防
1. 暴露的定义与分级
狂犬病暴露是指被狂犬、疑似狂犬或者不能确定是否患有狂犬病的宿主动物咬伤、抓伤、舔舐粘膜或者破损皮肤处,或者开放性伤口、粘膜直接接触可能含有狂犬病病毒的唾液或者组织。此外,罕见情况下,可以通过器官移植或吸入气溶胶而感染狂犬病病毒。
按照暴露性质和严重程度将狂犬病暴露分为三级[6, 18, 19, 22]:
I级暴露:符合以下情况之一者:
(1)接触或喂养动物;
(2)完好的皮肤被舔;
(3)完好的皮肤接触狂犬病动物或人狂犬病病例的分泌物或排泄物。
II级暴露:符合以下情况之一者:
(1)裸露的皮肤被轻咬;
(2)无出血的轻微抓伤或擦伤。
首先用肉眼仔细观察暴露处皮肤有无破损;当肉眼难以判断时,可用酒精擦拭暴露处,如有疼痛感,则表明皮肤存在破损(此法仅适于致伤当时测试使用)。
III级暴露:符合以下情况之一者:
(1)单处或多处贯穿皮肤的咬伤或抓伤(“贯穿”表示至少已伤及真皮层和血管,临床表现为肉眼可见出血或皮下组织);
(2)破损皮肤被舔舐(应注意皮肤皲裂、抓挠等各种原因导致的微小皮肤破损);
(3)粘膜被动物唾液污染(如被舔舐);
(4)暴露于蝙蝠(当人与蝙蝠之间发生接触时应考虑进行暴露后预防,除非暴露者排除咬伤、抓伤或粘膜的暴露)。
2.暴露后处置
2.1暴露后预防处置的内容包括:
①尽早进行伤口局部处理;
②尽早进行狂犬病疫苗接种;
③需要时,尽早使用狂犬病被动免疫制剂(狂犬病人免疫球蛋白、抗狂犬病血清)。
2.2 判定暴露级别后,应根据需要尽早进行伤口处理;在告知暴露者狂犬病危害及应当采取的处置措施并获得知情同意后,采取相应处置措施(详见表3)。
①判定为I级暴露者,无需进行处置;
②判定为II级暴露者,应立即处理伤口,并按相关规定进行狂犬病疫苗接种(参见下文疫苗接种及再次暴露后处置中疫苗接种的内容);
③判定为III级暴露者,应立即处理伤口,并按照相关规定使用狂犬病被动免疫制剂,并接种狂犬病疫苗(参见下文疫苗接种、再次暴露后处置中疫苗接种及被动免疫制剂的内容)。
(1)伤口的外科处置
暴露后处置有两个主要目标,一是预防狂犬病的发生,二是预防伤口发生继发细菌感染,促进伤口愈合和功能恢复。对于II 级和III 级暴露,彻底的伤口处理是非常重要的。伤口处理包括对伤口内部进行彻底的冲洗、消毒以及后续的外科处置,这对于预防狂犬病发生,避免继发细菌感染具有重要意义[6, 18, 136]。
伤口处理包括对每处伤口进行彻底的冲洗、消毒以及后续的外科处置。局部伤口处理越早越好。如清洗或消毒时疼痛剧烈,可先给予局部麻醉。
①伤口冲洗:用肥皂水(或其他弱碱性清洗剂)和一定压力的流动清水交替清洗咬伤和抓伤的每处伤口至少15分钟。如条件允许,建议使用狂犬病专业清洗设备和专用清洗剂对伤口内部进行冲洗。最后用生理盐水冲洗伤口以避免肥皂液或其他清洗剂残留[6, 31, 37, 137, 138]。
②消毒处理:彻底冲洗后用稀碘伏(0.025%~0.05%)[130]、苯扎氯铵(0.005%~0.01%)[139]或其他具有病毒灭活效力的皮肤黏膜消毒剂消毒涂擦或消毒伤口内部。
③外科处置:在伤口清洗、消毒,并根据需要使用狂犬病被动免疫制剂至少两小时后,根据情况进行后续外科处置[6]。外科处置要考虑致伤动物种类、部位、伤口类型、伤者基础健康状况等诸多因素。
普通创伤伤口相比,动物致伤伤口具有病情复杂、软组织损伤严重、合并症多、细菌感染率高等特点,目前尚无统一的外科处置规范[139, 140]。且动物咬伤涉及骨科、耳鼻咽喉科、眼科、整形外科、普通外科、泌尿外科等多个临床专业,各专业在开放伤口处置上均有各自的原则或规范。因此,严重、复杂的动物咬伤伤口的后续外科处置,最好由专科医生或在专科医生协助下完成。
A.外科清创术:所有严重的咬伤伤口(如:撕裂伤、贯通伤、穿刺伤等)均需进行彻底的外科清创术。术前要根据伤口部位、手术大小及方式等选择合适的麻醉方式(如局部麻醉、区域麻醉、复合麻醉或全身麻醉),手术按照标准的外伤清创术原则进行[141]。
B.组织修复:咬伤所导致的重要器官、组织(如:神经、肌腱、骨、关节、血管等)损伤,应根据受损器官组织的具体情况(如受损程度、感染可能性、修复难度等)、相应专科的处置原则,选择进行I期修复、II期修复或延期修复。
C.伤口关闭及抗生素使用:伤口是否进行I期闭合以及是否预防性使用抗生素要考虑众多因素,如:就诊时间、伤口严重程度、伤口部位、致伤动物、伤口类型、伤者基础健康状况(如年龄和基础疾病:糖尿病、免疫功能受损、长期使用免疫抑制剂、激素等)以及医生对动物咬伤伤口处置的经验等[30, 32, 38, 142-149]。上述因素均可影响伤口继发细菌感染的风险。
暴露于犬、啮齿类动物,以及位于头面部、口腔粘膜的浅表、清洁、新鲜伤口[37, 39-43, 150, 151]属于继发感染的低危因素。而暴露于猫、灵长类、猪等动物;位于手、足、胫前、关节部位的穿刺伤、贯通伤、大面积撕裂伤、大面积皮肤软组织缺损伤口;老年患者或合并糖尿病、外周血管病、应用激素及免疫抑制剂、免疫性疾病、营养不良、放化疗等基础疾病等均属继发细菌感染的高危因素。存在感染高危因素者尽量避免I期缝合,可用透气性敷料覆盖创面,3-5天后根据伤口情况决定是否进行延期缝合或II期缝合,必要时可以预防性使用抗生素。
早期许多文献建议对伤者常规预防性使用抗生素[32, 142]。近些年的文献报道显示,预防伤口感染的关键在于尽早进行彻底的伤口清洗、清创及伤口闭合或覆盖。及时正确的伤口处理可显著降低咬伤伤口的细菌感染率[143-147]。文献研究提示,对于细菌感染低危者,在对伤口进行彻底清洗、消毒和清创后,与II期、延期闭合伤口或伤口保持开放相比,I期闭合伤口并不增加伤口的感染率,且缩短了伤口愈合时间,愈合后瘢痕更小[30, 32, 140, 141]。也有许多研究显示,常规预防性使用抗生素并未令咬伤患者受益[152-155]。
不推荐对所有的III级咬伤病例预防性使用抗生素,对存在感染高危因素或已出现伤口感染的病例可预防性或治疗性使用抗生素。抗生素最好根据伤口分泌物的细菌培养及药物敏感试验结果选择,推荐使用含有β-内酰胺酶抑制剂的β-内酰胺类抗生素、头孢洛林酯和第四代喹诺酮类抗生素[37, 39-43, 150, 151, 156-166]。
D.存在感染高风险因素者,伤口内应放置引流条或引流管,以利于伤口污染物及分泌物的排出。伤口较大时,为避免继发感染,可用透气性敷料覆盖创面。如必须缝合,应采取松散稀疏的缝合方式,以便于继续引流。
如果就诊时伤口已缝合,原则上不主张拆除。若缝合前未浸润注射被动免疫制剂,仍应在伤口周围浸润注射被动免疫制剂。
存在感染高风险因素者,应根据伤口状况、伤者基础免疫情况(破伤风类毒素)、距离最后接种时间等,酌情进行抗破伤风免疫预防处置。